WEAKLY PURE SUBMODULES OF MULTIPLICATION MODULES

LEILA HAMIDIAN JAHROMI and AHMAD KHAKSARI

Department of Mathematics Islamic Azad University Shiraz Branch Shiraz Iran e-mail: lhamidian@yahoo.com

Abstract

Let *R* be a commutative ring with non-zero identity and *M* be a unital *R*-module. Then *R*-submodule *N* of *M* is called weakly pure, if for every Boolean ideal *I* of *R*, $IN = N \cap IM$. This paper is devoted to investigate some of the properties of weakly pure submodules of multiplication modules.

1. Introduction

Throughout this paper, all rings will be commutative with non-zero identity and have at least one non-zero Boolean ideal and all modules will be unitary. Pure submodules of multiplication modules have been investigated by Ali and Smith [1] and others.

A submodule N of R-module M is called *pure*, if $IN = N \cap IM$, for every ideal I of R. The aim of this paper is to prove for weakly pure submodules some of the results given in [1] for pure submodules of multiplication modules.

2010 Mathematics Subject Classification: 16D80.

Keywords and phrases: Boolean ideal, weakly pure submodule, multiplication module, prime module.

Received September 30, 2010

© 2010 Scientific Advances Publishers

216 LEILA HAMIDIAN JAHROMI and AHMAD KHAKSARI

Now, we define the concepts that we will use. If R is a ring and N is a submodule of an R-module M, the ideal $\{r \in R : rM \subseteq N\}$ will be denoted by (N : M). Then (0 : M) is the annihilator of M. An R-module M is called a *multiplication module*, if for every submodule N of M, there exists an ideal I of R such that N = IM. In this case, I is called *presentation ideal of* N. If N is an R-submodule of multiplication R-module M, then N = (N : M)M. Also N = ann(M / N)M.

2. Main Results

Definition 1. Let M be a module over a ring R. A proper submodule N of M is said to be *prime* (weakly prime), if $rm \in N(0 \neq rm \in N)$ for $r \in R$ and $m \in M$ implies that either $m \in N$ or $r \in (N : M)$.

Definition 2. An ideal *I* of *R* is called *Boolean ideal*, if every element of *I* is idempotent.

Definition 3. An *R*-submodule *N* of *R*-module *M* is called *weakly* pure, if $IN = N \cap IM$, for every Boolean ideal *I* of *R*.

Definition 4. An *R*-module *M* is called *prime*, if (0 : M) = (0 : N) for every submodule *N* of *M*.

Theorem 1. If I is a Boolean ideal of R, then $IJ = I \cap J$ for every ideal J of R.

Proof. Assume that I is a Boolean ideal of R and $r \in I \cap J$. Then $r = r^2 \in I$ and $r = r^2 \in J$. So $r = r^2 \in IJ$, also $IJ \subseteq I \cap J$, hence $IJ = I \cap J$, for every ideal J of R.

Theorem 2. Let *M* be a prime multiplication faithful *R*-module and *N* be a proper weakly pure submodule of *M*. Then, the following hold:

(i) The ideal (N : M) is Boolean.

(ii) The ideal (N : M) is idempotent.

Proof. (i) Assume that $r \in (N : M) = ann(M/N)$. Then, $r(m + N) = r^2(m + N) = N = (r - r^2)(m + N) = (r - r^2)N$. Because $(r - r^2)N \subseteq (r - r^2)(m + N) = N$, hence for every arbitrary $m \in M$ and $n \in N$, there exists $n \in N$, such that $(r - r^2)n = (r - r^2)(m + n)$. So $(r - r^2)(m + n) = 0$, for $n = n - n \in N$. Then (m + n) = 0 or $(r - r^2) \in (0 : m + n)$. But $(m + n) \neq 0$ (if not $m \in N$, but N is a proper submodule and $m \in M$ is arbitrary, so $(m + n) \neq 0$), hence $(r - r^2) \in (0 : m + n)$. But M is prime and faithful, so $(r - r^2) \in (0 : m + n) = (0 : R(m + n)) = (0 : M) = 0$, and it implies that $r = r^2$ and so (N : M) is a Boolean ideal.

(ii) By Theorem 1, we have $(N:M)^2 = (N:M)(N:M) = (N:M)$ $\cap (N:M) = (N:M)$, hence the ideal (N:M) is idempotent.

Let N and K be submodules of a multiplication R-module M with $N = I_1M$ and $K = I_2M$, for some ideals I_1 and I_2 of R. The product of N and K denoted by NK is defined by $NK = I_1I_2M$. Then by [2, Theorem 3.4], the product of N and K is independent of presentation of N and K. Clearly, NK is a submodule of M and $NK \subseteq N \cap K$. Now we have the following results:

Corollary 3. Let M be a prime multiplication faithful R-module. Then every proper weakly pure submodule of M is idempotent and in this case, if N is a proper weakly pure submodule of M, then N = (N : M)N.

Proof. Let N be a proper weakly pure submodule of M. Then by Theorem 2, $N^2 = (N : M)^2 M = (N : M)M = N$. Also $N = (N : M)^2 M$ = (N : M)N.

Corollary 4. Let M be a prime multiplication faithful R-module and $0 \neq N$ be a proper weakly pure submodule of M. Then ann(N : M) = 0.

Proof. For every $x \in ann(N : M)$, we have x(N : M) = 0, hence xN = x(N : M)N = 0, so that $x \in annN = annM = 0$, hence x = 0, so ann(N : M) = 0.

218 LEILA HAMIDIAN JAHROMI and AHMAD KHAKSARI

Theorem 5. Let M be a prime multiplication faithful R-module and $0 \neq N$ be a proper weakly pure submodule of M. Then N is weakly prime, if and only if it is a prime submodule of M.

Proof. Because every prime submodule is weakly prime, it is enough to show that if N is weakly prime, then N is prime. Assume that $0 \neq N$ is a proper weakly prime submodule of M that is not prime. Then by [4, Theorem 9] and Theorem 2, we have $N = (N : M)M = (N : M)^2 M = (N : M)N = 0$, which is a contradiction. Thus N is prime.

References

- Majid M. Ali and David J. Smith, Pure submodules of multiplication modules, Contributions to Algebra and Geometry 45 (2004), 61-74.
- [2] R. Ameri, On the prime submodules of multiplication modules, International Journal of Mathematics and Mathematical Sciences 27 (2003), 1715-1724.
- [3] Z. A. EL-Bast and P. F. Smith, Multiplication modules, Comm. in Algebra 16 (1988), 755-779.
- [4] U. Tekir, On multiplication modules, International Mathematical Forum 2(29) (2007), 1415-1420.