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Abstract 

Let R be a commutative ring with non-zero identity and M be a unital R-module. 
Then R-submodule N of M is called weakly pure, if for every Boolean ideal I of 

., IMNINR ∩=  This paper is devoted to investigate some of the properties of 
weakly pure submodules of multiplication modules. 

1. Introduction 

Throughout this paper, all rings will be commutative with non-zero 
identity and have at least one non-zero Boolean ideal and all modules will 
be unitary. Pure submodules of multiplication modules have been 
investigated by Ali and Smith [1] and others. 

A submodule N of R-module M is called pure, if ,IMNIN ∩=  for 
every ideal I of R. The aim of this paper is to prove for weakly pure 
submodules some of the results given in [1] for pure submodules of 
multiplication modules.  
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Now, we define the concepts that we will use. If R is a ring and N is a 
submodule of an R-module M, the ideal { }NrMRr ⊆∈ :  will be 

denoted by ( ).: MN  Then ( )M:0  is the annihilator of M. An R-module 

M is called a multiplication module, if for every submodule N of M, there 
exists an ideal I of R such that .IMN =  In this case, I is called 
presentation ideal of N. If N is an R-submodule of multiplication                             
R-module M, then ( ) .: MMNN =  Also ( ) .MNMannN =   

2. Main Results 

Definition 1. Let M be a module over a ring R. A proper submodule 
N of M is said to be prime (weakly prime), if ( )NrmNrm ∈≠∈ 0  for 

Rr ∈  and Mm ∈  implies that either Nm ∈  or ( ).: MNr ∈   

Definition 2. An ideal I of R is called Boolean ideal, if every element 
of I is idempotent.  

Definition 3. An R-submodule N of R-module M is called weakly 
pure, if ,IMNIN ∩=  for every Boolean ideal I of R. 

Definition 4. An R-module M is called prime, if ( ) ( )NM :0:0 =  for 

every submodule N of M. 

Theorem 1. If I is a Boolean ideal of R, then JIIJ ∩=  for every 

ideal J of R. 

Proof. Assume that I is a Boolean ideal of R and .JIr ∩∈  Then 

Irr ∈= 2  and .2 Jrr ∈=  So ,2 IJrr ∈=  also ,JIIJ ∩⊆  hence 

,JIIJ ∩=  for every ideal J of R. ■ 

Theorem 2. Let M be a prime multiplication faithful R-module and N 
be a proper weakly pure submodule of M. Then, the following hold: 

(i) The ideal ( )MN :  is Boolean. 

(ii) The ideal ( )MN :  is idempotent. 
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Proof. (i) Assume that ( ) ( ).: NMannMNr =∈  Then, ( ) =+ Nmr   

( ) ( ) ( ) ( ) .222 NrrNmrrNNmr −=+−==+  Because ( ) ⊆− Nrr 2  

( ) ( ) ,2 NNmrr =+−  hence for every arbitrary Mm ∈  and ,ń N∈  there 

exists ,Nn ∈  such that ( )2r r ń− = ( )( ).2 nmrr +−  So ( )2r r− ( )˝m n+  

0,=  for n̋ n ń N.= − ∈  Then ( )˝ 0m n+ =  or ( ) ∈− 2rr ( )˝0 : .m n+  But 

( )˝ 0m n+ =/  (if not ,Nm ∈  but N is a proper submodule and Mm ∈  is 

arbitrary, so ( ) )˝ 0 ,m n+ =/  hence ( ) ∈− 2rr  ( )˝0 : .m n+  But M is prime 

and faithful, so ( ) ∈− 2rr ( )˝0 : m n+  ( ( ) )˝0 : R m n= + ( ) ,0:0 == M  

and it implies that 2rr =  and so ( )MN :  is a Boolean ideal. 

(ii) By Theorem 1, we have ( ) ( ) ( ) ( )MNMNMNMN :::: 2 ==  
( ) ( ),:: MNMN =∩  hence the ideal ( )MN :  is idempotent. ■ 

Let N and K be submodules of a multiplication R-module M with 
MIN 1=  and ,2MIK =  for some ideals 1I  and 2I  of R. The product of 

N and K denoted by NK is defined by .21 MIINK =  Then by [2, Theorem 
3.4], the product of N and K is independent of presentation of N and K. 
Clearly, NK is a submodule of M and .KNNK ∩⊆  Now we have the 
following results: 

Corollary 3. Let M be a prime multiplication faithful R-module. 
Then every proper weakly pure submodule of M is idempotent and in this 
case, if N is a proper weakly pure submodule of M, then ( ) .: NMNN =  

Proof. Let N be a proper weakly pure submodule of M. Then by 

Theorem ( ) ( ) .::,2 22 NMMNMMNN ===  Also ( ) MMNN 2:=  
( ) .: NMN=  ■ 

Corollary 4. Let M be a prime multiplication faithful R-module and 
N≠0  be a proper weakly pure submodule of M. Then ( ) .0: =MNann  

Proof. For every ( ),: MNannx ∈  we have ( ) ,0: =MNx  hence 
( ) ,0: == NMNxxN  so that ,0==∈ annMannNx  hence ,0=x  so  

( ) .0: =MNann  ■ 
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Theorem 5. Let M be a prime multiplication faithful R-module and 
N≠0  be a proper weakly pure submodule of M. Then N is weakly prime, 

if and only if it is a prime submodule of M. 

Proof. Because every prime submodule is weakly prime, it is enough 
to show that if N is weakly prime, then N is prime. Assume that N≠0  is 
a proper weakly prime submodule of M that is not prime. Then by [4, 

Theorem 9] and Theorem 2, we have ( ) ( ) === MMNMMNN 2::  
( ) ,0: =NMN  which is a contradiction. Thus N is prime. ■ 
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