WEAKLY PURE SUBMODULES OF MULTIPLICATION MODULES

LEILA HAMIDIAN JAHROMI and AHMAD KHAKSARI
Department of Mathematics
Islamic Azad University Shiraz Branch
Shiraz
Iran
e-mail: lhamidian@yahoo.com

Abstract

Let R be a commutative ring with non-zero identity and M be a unital R-module. Then R-submodule N of M is called weakly pure, if for every Boolean ideal I of $R, I N=N \cap I M$. This paper is devoted to investigate some of the properties of weakly pure submodules of multiplication modules.

1. Introduction

Throughout this paper, all rings will be commutative with non-zero identity and have at least one non-zero Boolean ideal and all modules will be unitary. Pure submodules of multiplication modules have been investigated by Ali and Smith [1] and others.

A submodule N of R-module M is called pure, if $I N=N \cap I M$, for every ideal I of R. The aim of this paper is to prove for weakly pure submodules some of the results given in [1] for pure submodules of multiplication modules.
2010 Mathematics Subject Classification: 16D80.
Keywords and phrases: Boolean ideal, weakly pure submodule, multiplication module, prime module.

Received September 30, 2010

Now, we define the concepts that we will use. If R is a ring and N is a submodule of an R-module M, the ideal $\{r \in R: r M \subseteq N\}$ will be denoted by $(N: M)$. Then $(0: M)$ is the annihilator of M. An R-module M is called a multiplication module, if for every submodule N of M, there exists an ideal I of R such that $N=I M$. In this case, I is called presentation ideal of N. If N is an R-submodule of multiplication R-module M, then $N=(N: M) M$. Also $N=\operatorname{ann}(M / N) M$.

2. Main Results

Definition 1. Let M be a module over a ring R. A proper submodule N of M is said to be prime (weakly prime), if $r m \in N(0 \neq r m \in N)$ for $r \in R$ and $m \in M$ implies that either $m \in N$ or $r \in(N: M)$.

Definition 2. An ideal I of R is called Boolean ideal, if every element of I is idempotent.

Definition 3. An R-submodule N of R-module M is called weakly pure, if $I N=N \cap I M$, for every Boolean ideal I of R.

Definition 4. An R-module M is called prime, if $(0: M)=(0: N)$ for every submodule N of M.

Theorem 1. If I is a Boolean ideal of R, then $I J=I \cap J$ for every ideal J of R.

Proof. Assume that I is a Boolean ideal of R and $r \in I \cap J$. Then $r=r^{2} \in I$ and $r=r^{2} \in J$. So $r=r^{2} \in I J$, also $I J \subseteq I \cap J$, hence $I J=I \bigcap J$, for every ideal J of R.

Theorem 2. Let M be a prime multiplication faithful R-module and N be a proper weakly pure submodule of M. Then, the following hold:
(i) The ideal ($N: M$) is Boolean.
(ii) The ideal $(N: M)$ is idempotent.

Proof. (i) Assume that $r \in(N: M)=\operatorname{ann}(M / N)$. Then, $r(m+N)=$ $r^{2}(m+N)=N=\left(r-r^{2}\right)(m+N)=\left(r-r^{2}\right) N$. Because $\left(r-r^{2}\right) N \subseteq$ $\left(r-r^{2}\right)(m+N)=N$, hence for every arbitrary $m \in M$ and $\dot{n} \in N$, there exists $n \in N$, such that $\left(r-r^{2}\right) n^{\prime}=\left(r-r^{2}\right)(m+n)$. So $\left(r-r^{2}\right)(m+\tilde{n})$ $=0$, for $\tilde{n}=n-n \in N$. Then $(m+\tilde{n})=0$ or $\left(r-r^{2}\right) \in(0: m+\check{n})$. But $(m+\check{n}) \neq 0$ (if not $m \in N$, but N is a proper submodule and $m \in M$ is arbitrary, so $(m+\tilde{n}) \neq 0)$, hence $\left(r-r^{2}\right) \in(0: m+\check{n})$. But M is prime and faithful, so $\left(r-r^{2}\right) \in(0: m+\dddot{n})=(0: R(m+\dddot{n}))=(0: M)=0$, and it implies that $r=r^{2}$ and so $(N: M)$ is a Boolean ideal.
(ii) By Theorem 1, we have $(N: M)^{2}=(N: M)(N: M)=(N: M)$ $\cap(N: M)=(N: M)$, hence the ideal $(N: M)$ is idempotent.

Let N and K be submodules of a multiplication R-module M with $N=I_{1} M$ and $K=I_{2} M$, for some ideals I_{1} and I_{2} of R. The product of N and K denoted by $N K$ is defined by $N K=I_{1} I_{2} M$. Then by [2, Theorem 3.4], the product of N and K is independent of presentation of N and K. Clearly, $N K$ is a submodule of M and $N K \subseteq N \cap K$. Now we have the following results:

Corollary 3. Let M be a prime multiplication faithful R-module. Then every proper weakly pure submodule of M is idempotent and in this case, if N is a proper weakly pure submodule of M, then $N=(N: M) N$.

Proof. Let N be a proper weakly pure submodule of M. Then by Theorem 2, $N^{2}=(N: M)^{2} M=(N: M) M=N$. Also $N=(N: M)^{2} M$ $=(N: M) N$.

Corollary 4. Let M be a prime multiplication faithful R-module and $0 \neq N$ be a proper weakly pure submodule of M. Then $\operatorname{ann}(N: M)=0$.

Proof. For every $x \in \operatorname{ann}(N: M)$, we have $x(N: M)=0$, hence $x N=x(N: M) N=0$, so that $x \in a n n N=a n n M=0$, hence $x=0$, so $\operatorname{ann}(N: M)=0$.

Theorem 5. Let M be a prime multiplication faithful R-module and $0 \neq N$ be a proper weakly pure submodule of M. Then N is weakly prime, if and only if it is a prime submodule of M.

Proof. Because every prime submodule is weakly prime, it is enough to show that if N is weakly prime, then N is prime. Assume that $0 \neq N$ is a proper weakly prime submodule of M that is not prime. Then by [4, Theorem 9] and Theorem 2, we have $N=(N: M) M=(N: M)^{2} M=$ $(N: M) N=0$, which is a contradiction. Thus N is prime.

References

[1] Majid M. Ali and David J. Smith, Pure submodules of multiplication modules, Contributions to Algebra and Geometry 45 (2004), 61-74.
[2] R. Ameri, On the prime submodules of multiplication modules, International Journal of Mathematics and Mathematical Sciences 27 (2003), 1715-1724.
[3] Z. A. EL-Bast and P. F. Smith, Multiplication modules, Comm. in Algebra 16 (1988), 755-779.
[4] U. Tekir, On multiplication modules, International Mathematical Forum 2(29) (2007), 1415-1420.

